Maximum Entropy Estimation of Probability Distribution of Variables in Higher Dimensions from Lower Dimensional Data
نویسندگان
چکیده
A common statistical situation concerns inferring an unknown distribution Q(x) from a known distribution P(y), where X (dimension n), and Y (dimension m) have a known functional relationship. Most commonly, n ≤ m, and the task is relatively straightforward for well-defined functional relationships. For example, if Y1 and Y2 are independent random variables, each uniform on [0, 1], one can determine the distribution of X = Y1 + Y2; here m = 2 and n = 1. However, biological and physical situations can arise where n > m and the functional relation Y→X is non-unique. In general, in the absence of additional information, there is no unique solution to Q in those cases. Nevertheless, one may still want to draw some inferences about Q. To this end, we propose a novel maximum entropy (MaxEnt) approach that estimates Q(x) based only on the available data, namely, P(y). The method has the additional advantage that one does not need to explicitly calculate the Lagrange multipliers. In this paper we develop the approach, for both discrete and continuous probability distributions, and demonstrate its validity. We give an intuitive justification as well, and we illustrate with examples.
منابع مشابه
Near-Maximum Entropy Models for Binary Neural Representations of Natural Images
Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis fea...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملDischarge Estimation by using Tsallis Entropy Concept
Flow-rate measurement in rivers under different conditions is required for river management purposes including water resources planning, pollution prevention, and flood control. This study proposed a new discharge estimation method by using a mean velocity derived from a 2D velocity distribution formula based on Tsallis entropy concept. This procedure is done based on several factors which refl...
متن کاملVelocity Distribution in the 90-degree Bend based on the Probability and Entropy Concept
Practical concept of velocity distribution of pressure flow in the bends is interesting and hence, the professional engineering design has been investigated in the current study. This paper shows that velocity distribution in the bends can be analyzed in terms of the probability distributions. The concept of entropy based on the probability is an applied and new approach to achieve velocity pro...
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2015